
There are close parallels between inflammation associated with
allergic disease and that caused by infections with helminth para-
sites. Both allergy and helminth infections are associated with ele-
vated levels of IgE, tissue eosinophilia and mastocytosis, and
CD4+ T cells that preferentially secrete the Th2 cytokines IL-4,
IL-5, and IL-13 [1,2]. There is good evidence that the expression
of inflammation caused by helminth infections can be modulated
by the host immune response [3], and that the failure of the
expression of similar mechanisms among individuals predisposed
to allergy may be responsible for the clinical expression of aller-
gic disease [4]. Further, there is accumulating evidence that
helminth infections, particularly those caused by intestinal
helminth parasites (or geohelminths) may be capable of modu-
lating the expression of allergic disease [5–8]. This review will
examine the evidence for such a modulatory role of intestinal
helminth infections (geohelminths) and will provide evidence that
the expression of allergic inflammation in different regions of the
Tropics may depend partly on local differences in the endemicity
of geohelminth infections.

ATOPY AND ASTHMA

Human allergic disease in Western industrialized countries, com-
monly manifested as asthma, rhinitis and eczema, is strongly asso-
ciated with atopy[9–11]. Atopy is characterized by elevated levels
of both total IgE and IgE specific for common environmental
allergens, and evidence of in vivo IgE-mediated immediate hyper-
sensitivity as determined by skin prick testing with the same aller-
gens [9]. Most researchers consider atopy to be an important
determinant of allergic asthma although only 25–30% of atopic
individuals in industrialized countries may actually go on to
develop clinically relevant allergic disease [12] and an estimated
37% of asthma is attributable to atopy at the population level [13].
The factors that cause only a proportion of atopic individuals to

develop clinical disease have not been defined although environ-
mental factors are likely to be important.

EPIDEMIOLOGY AND ENVIRONMENTAL
DETERMINANTS OF ASTHMA

Large differences in the prevalence and symptoms of asthma have
emerged from the first phase of ISAAC [14]. These studies have
shown very large international differences in the prevalence of
asthma, allergic rhinoconjunctivitis, and atopic eczema. Further,
the prevalence of allergic diseases including asthma appears to be
increasing in Western industrialized countries [12,15,16]. The
causes of the underlying trend of increased prevalence of allergic
diseases within the same populations and the large intercountry
differences in prevalence are not clear. Some have attributed the
rising prevalence to an increase in atopy [17], although markedly
different prevalences of asthma are reported among populations
with very similar rates of allergic sensitization [18–20].

The prevalence of allergic disease appears to be much greater
in Western industrialized countries than in countries with more
traditional agricultural economies [14,20]. Within Tropical
regions, there are large differences in the prevalence of allergy
between urban and rural areas with higher rates of asthma
[19,21–23] in urban populations. There is some evidence for a 
disassociation between atopy and asthma in some regions of the
Tropics [19,24] and in rural agriculture-based populations in
Europe [20].

Environmental factors could modulate allergic sensitization
to environmental allergens and the expression of allergic disease.
Such environmental factors may include high-level exposure to
allergens [25,26], air pollution [27], exposure to farm animals [28],
and diet [29]. Observations that children that are low in the birth
order and that live in large families have a reduced risk of aller-
gic disease has led to the suggestion that multiple and continued
exposures to childhood viral and bacterial infections may protect
against the development of allergy [30] – the so-called hygiene
hypothesis. Several epidemiological studies have demonstrated a
protective role for infectious agents against the development of
allergy including measles [31], gastrointestinal infections [32] the
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normal gastrointestinal flora of the gut [28,33], and helminth
infections [5,6,8,34].

GEOHELMINTH INFECTIONS AND ALLERGY

The role of gastrointestinal helminth infections as environmental
determinants of atopy/allergy is of considerable interest. Geo-
helminth parasites are ubiquitous world-wide and are estimated
to infect approximately one third of the human population. Geo-
helminth infections are the most prevalent and persistent of all
childhood infections and most individuals living in endemic areas
are infected at some time during their lives and many are infected
continuously from soon after birth into adulthood.

Ascaris lumbricoides, Trichuris trichiura, and Ancylostoma
duodenale cause the most prevalent infections. Infection with
A.lumbricoides and T.trichiura are acquired at an early age reach-
ing a peak in prevalence and intensity between 5 and 15 years of
age. Infections with A.duodenale tend to be delayed until the child
is able to walk, and peak prevalence may occur later. A useful
indication of the intensity of transmission is the age-prevalence
profile that tends to peak earlier in areas of high transmission and
later in areas where transmission is less intense. The intensity of
transmission of geohelminths and the pattern of transmission
throughout the year (i.e. continuous or interrupted) is likely to be
an important determinant of the host immune response to the
parasite [35] and the nature of the immune interaction between
geohelminths and allergy.

EPIDEMIOLOGICAL STUDIES OF
GEOHELMINTH INFECTIONS AND ALLERGY

Numerous studies have investigated the relationship between
geohelminths and allergy. These studies include anecdotal evi-
dence [36], cross-sectional prevalence surveys [21,37,38] or 
case-control studies [39–44]. The studies that have determined
geohelminth infection by the presence or absence of ova or larvae
in stool samples, have provided conflicting evidence showing
either no relationship [39,41–43] or a protective effect of infec-
tion [8,36,45–49]. Overall, there appears to be a negative associ-
ation between helminth prevalence and asthma prevalence 
in Tropical regions at the population level [50].

Probably the most influential studies examining geo-
helminth–allergy interactions have been a series of studies con-
ducted by Lynch et al. [45–47] in Venezuela. The findings of these
studies indicate that the intensity of helminth transmission is an
important determinant of the effect of helminth infection on aller-
gic reactivity – in areas where transmission is low or infrequent
(e.g. among urban groups of high socio-economic status), allergic
reactivity is high, while among urban or rural groups exposed to
intense transmission, allergic reactivity is low. Further, treatment
of urban children living in a poor and geohelminth endemic envi-
ronment can lead to increased allergic reactivity [6,48].

Several studies have demonstrated that anthelmintic treat-
ment of asthmatic subjects living in endemic areas can result in
an improvement in asthmatic symptoms [51–53] and/or reduction
in skin test reactivity to environmental allergens [53], indicating
that intestinal helminth infections may also be capable of enhanc-
ing allergic inflammation.

A recent case-control study from Ethiopia explored the effect
of different risk factors for wheeze among asthmatics and
nonasthmatic controls from both urban and rural populations

[34]. The study showed that the effect of house dust mite sensiti-
zation on the risk of wheeze was significantly decreased with
increasing intensity of parasite infection (with hookworm), but
that the rate of sensitization was consistently higher in individu-
als with the highest parasite burdens (with Trichuris). These find-
ings were interpreted to suggest that while intestinal helminth
infections may enhance allergic sensitization to aeroallergens,
intestinal helminth infections with a pulmonary phase of larval
migration (principally hookworm infection but perhaps also
Ascaris), may actually suppress allergic inflammation in the lungs
and protect against wheeze. The observation that hepatitis A
seroprevalence was not associated with wheeze or atopy suggests
that geohelminth infections are not simply a surrogate factor 
for exposure to a contaminated environment and other enteric
pathogens. However, these observations were made principally
on adults from an urban area in Ethiopia, and may not be gener-
alizable to children living in rural areas where the pathoaetiology
of wheeze [54] and the epidemiology of geohelminth infections
[47] may be very different. The findings of increased sensitization
to aeroallergens with higher parasite burdens is consistent with
observations of increased rates of sensitization to aeroallergens
among children who become infected with Ascaris in Eastern
Germany [55], and in other areas where geohelminth transmis-
sion is likely to be low or intermittent [7,53]. Studies conducted
among rural populations indicate a protective effect for helminth
infections against atopy [8,45,49]

NATURAL HISTORY OF THE IMMUNE RESPONSE
TO HUMAN GEOHELMINTH INFECTIONS

How can such contradictory observations be explained in which
helminth infections can both risk factors for atopy/allergy and 
also protective factors? We have hypothesized that geohelminth
infections may alter the immune response to parasite antigens 
and environmental aeroallergens to either induce or suppress
allergic reactivity, and there is good evidence that human helminth
infections can alter the immune response to nonparasite antigens
to more closely resemble the parasite-specific response [56,57].

A useful paradigm with which to understand the immune
response to helminth infections, and the changes that these
responses undergo over time is to divide the natural history of
helminth infections into ‘acute’ and ‘chronic’ stages. Under con-
ditions of continuous exposure and the maintenance of high par-
asite burdens, the acute stage will develop into chronic infection
over time. The discussion that follows will examine this paradigm
using data from helminth infections in general, and then will focus
on geohelminths.

THE ‘ACUTE’ VERSUS ‘CHRONIC’ PARADIGM OF
HUMAN HELMINTH INFECTION

‘Acute’ helminth infections may follow a short period of exposure
or infrequent exposure [3]. The classic examples of ‘acute’
helminth infections are reported in expatriates with relatively
short exposure histories and who frequently develop clinically
apparent allergic reactions (e.g. urticarial rashes) [58]. Similar
observations have been made among groups with short periods
of exposure or infrequent or intermittent exposure such as: 

• primary infections in experimental volunteers [59,60] or
through accidental/malicious exposure [61,62];

• young children living in endemic areas [63,64];
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• populations that have migrated to an endemic area from an
nonendemic area [63,65] or populations that become exposed
through immigration of infected individuals into a nonendemic
area [66];

• nonmigrant populations that have become exposed en masse to
transmission due to ecological changes [67];

• inhabitants of endemic areas where transmission is seasonal or
sporadic [68,69].

‘Acute’ infections are associated with parasite-specific immunity
that is characterized by a mixed Th1/Th2 (or Th0) cytokine 
phenotype [66,70,71], marked eosinophilia, and elevated levels of
parasite-specific IgE [72]. Acute helminth infections of humans
are associated with numerous allergic syndromes [3,58]. These
allergic reactions are associated with intense eosinophilic infiltra-
tion and may permit the host to immobilize and kill invasive 
parasite larvae [73].

To sustain transmission, helminths must maintain a state of
persistent ‘infectiousness’ within the human host. As host mor-
bidity is closely related to parasite burden, most natural helminth
infections of humans are likely to have coevolved, with their hosts,
mechanisms to maintain active infections but control parasite
numbers. Primarily, there is the need to control the allergic reac-
tions that are so typical of early and acute infections. Allergic
phenomena are rare in individuals with long-standing chronic
infections, and their immune response differs from the ‘acute’
phenotype by a more polarized Th2 response [66,70,71,74], and
the secretion of significant amounts of immunosuppressive
cytokines such as IL-10 and TGF-b [66,74–76]. Levels of total IgE
are significantly higher in chronic infections with proportionately
less parasite specific IgE [72]. High levels of polyclonal and 
parasite specific IgG4 are typical also [77,78].

THE ‘ACUTE’ VERSUS ‘CHRONIC’ PARADIGM FOR
GEOHELMINTH INFECTIONS

All geohelminth parasites with a pulmonary phase of larval
migration (i.e. A.lumbricoides, hookworm, and Strongyloides 
stercoralis) are capable of causing an asthma–like syndrome
(Loeffler’s syndrome), that is characterized by breathlessness,
cough, and eosinophilia [68]. Ascariasis is also associated with
allergic rashes and acute anaphylaxis [79], although the former
may be more common with infections in which parasite larvae
migrate more widely in the tissues (e.g. S.stercoralis and larva
migrans syndromes). In locations where Ascaris infections are
seasonal as a result of the failure of eggs to survive throughout
the year, symptoms of pulmonary ascariasis may be relatively
common. Gelpi and Mustafa [69] reported outbreaks of
eosinophilic pneumonitis associated with A.lumbricoides infec-
tions occurring every year during and after the short rainy season
in Saudi Arabia.

In regions where ascariasis is highly endemic, and infections
are acquired at an early age, symptomatic pulmonary ascariasis
appears to be rare. For example, a large survey conducted over a
year in Colombia [80] in communities where the prevalence of
ascariasis was between 25 and 85%, was able to identify only 1
typical case of larval ascariasis among over 12 000 individuals
attending health centres or local hospitals. Therefore, in areas
where transmission of Ascaris occurs throughout the year, larval
ascariasis is either asymptomatic or is associated with mild and
nonspecific symptoms.

RELEVANCE OF THE ACUTE VS. 
CHRONIC PARADIGM

The acute/chronic paradigm provides a useful framework within
which to understand differences in parasite immune responses
and clinical disease observed in different countries, and even
between different communities within the same region. An
important determinant of the expression of geohelminth–
associated allergic inflammation may be the epidemiology of 
geohelminth infections in a particular area (Fig. 1) – where 
geohelminth transmission is sporadic or seasonal (low preva-
lence), an acute allergy-enhancing phenotype may predominate
while in areas where transmission is continuous (high preva-
lence), more chronic and allergy-suppressing infections would 
be expected. In areas where transmission is continuous, such 
infections would be expected to suppress allergic responses in an
age- and infection intensity-dependent fashion. In the case of
infections such as A.lumbricoides and T.trichiura that are acquired
at an early age, and constant exposure occurs throughout child-
hood, school age children with the heaviest parasite burdens
would be expected to have the lowest rates of atopy and allergic
disease.

MECHANISMS OF ALLERGY MODULATION

Geohelminth parasites may modulate allergic disease in two
ways: (1) directly – geohelminth parasites may themselves induce
allergic disease (e.g. Loeffler’s syndrome); and (2) indirectly – 
geohelminth parasites may modulate the immune response 
to environmental allergens. There are several mechanisms by 
which geohelminth infections can alter the immune response 
to environmental aeroallergens to either induce or suppress 
allergic reactivity. Concurrent geohelminth infections may affect 
immune priming for IgE as well as the development of the patho-
physiological changes in the lung that are typical of asthma
(airways inflammation and bronchial hyperreactivity), and may
act at several levels in the allergic inflammatory pathway by
affecting: 

• the initial development and polarization of Th2 helper cells;
• Th2 helper cell action in the airways;
• the level of nonspecific inflammation in the airways.

The mechanisms by which acute and chronic infections may 
modulate allergic inflammation are listed in Fig. 1 and include
acute and chronic infections.

Acute infections

The invasive larvae of geohelminth parasites that migrate through
the lungs are the primary target of parasite specific immune
responses [3], and early during infection induce strong eosinophil-
rich inflammation in the lungs [81]. Ascaris larvae secrete large
amounts of allergenic substances [82] that are likely to be the
primary stimulus for IgE production in infected individuals.
Larval antigens are likely to induce strong Th2 responses [83].
During early infections, invasive parasite larvae may not only
induce allergic inflammation directly but also may enhance aller-
gic inflammation targeted against nonparasite allergens (such as
aeroallergens) through bystander or adjuvant effects as suggested
by the findings of experimental animal studies [84]. Enhanced 
IL-4 and IL-13 production may result in increased synthesis of
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aeroallergen-specific IgE and sensitize mast cells in a number of
tissues including the skin (e.g. resulting in increased atopy).

Chronic infections
Chronic infections with geohelminth parasites may suppress 
parasite-specific and aeroallergen-specific immune responses
through several mechanisms:

Mast cell saturation. Geohelminth parasites secrete potent
allergens [82,85] and are considered to be the principal explana-
tion for the high levels of polyclonal IgE that are observed in
endemic populations [58,86]. Children living in endemic areas
often have total IgE levels in excess of 10 000 IU/ml [35]. The pro-
duction of large amounts of polyclonal IgE in helminthiases may
modulate immediate hypersensitivity reactions by inhibition of
the activity of mast cells by saturation of high affinity FceR1
receptors on mast cells and basophils [5,46,87,88]. Saturation of
mast cells could explain reduced sensitivity to aeroallergens 
and also reduced inflammation in the airways (bronchial 
hyperresponsiveness). Likewise, saturation of low-affinity FceR11

with nonspecific IgE on antigen presenting cells may prevent
optimal IgE-dependent antigen focusing and presentation to T
cells [3].

IgG4 ‘blocking’ antibodies Polyclonal activation of IgG4 by
parasite products and the production of large amounts of IgG4
including IgG4 antibodies specific to IgE-reactive epitopes of
environmental allergens, may block IgE-driven inflammation by
saturation of available reaginic epitopes [77,89,90].

Bystander suppression by anti-inflammatory cytokines.
Observations from tissue invasive helminth infections would
support the development of cellular immune down-regulatory
mechanisms following persistent exposure and chronicity of infec-
tion that may suppress allergic inflammation. The principal
mechanism by which this occurs appears to be the increased 
production of anti-inflammatory cytokines (IL-10 and TGF-b)
[74–76]. The production of large amounts of anti-inflammatory
cytokines such as IL-10 by parasite-antigen stimulated T cells
could cause bystander suppression of immune responses to 
environmental allergens [8] or the induction of T cells specific for

Fig. 1. The ‘acute versus chronic’ geohelminth infection paradigm as an environmental determinant of atopy. The Figure shows the rela-
tionship between the prevalence of atopy (defined by allergen skin test reactivity) and geohelminth infections in areas of different inten-
sities of geohelminth transmission. Areas of low-level exposure are associated with a low prevalence of geohelminth infections, a
predominantly acute geohelminth infection phenotype, and enhanced atopic reactivity while areas of high-level exposure are associated
with a high prevalence of infections, a chronic infection phenotype, and suppressed atopic reactivity. The mechanisms by which acute and
chronic geohelminth infections may affect atopic reactivity are shown in italics [93], MCs, mastcells.
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environmental allergens that secrete IL-10/TGF-b (e.g. Th3 or 
Tr-1 cells) and that directly down-regulate allergic responses to
environmental allergens [4].

Tolerization. There is some evidence to suggest that ‘toler-
ization’ to parasite antigens may occur in early infancy or neo-
natally through the transfer of parasite antigens from infected
mothers. Tolerization could occur either peripherally or through
thymic deletion of reactive cells [91,92], and could be induced 
to environmental aeroallergens that are immunologically cross-
reactive with parasite allergens [93,94].

CONCLUSION

There are large international differences in the prevalence of
allergic disease, that appears to be much lower in Tropical regions,
particularly among rural populations. Environmental factors
including childhood infections have been implicated as important
determinants of the expression of allergic disease. Geohelminth
infections are the most prevalent and persistent of all childhood
infections and are most prevalent among rural populations in the
Tropics. There is evidence from different epidemiological studies
that geohelminth infections may modulate the expression of
atopy and also of allergic disease, and may be protective against
atopy/allergic disease in some populations but risk factors for
atopy/allergic disease in others. A partial explanation for such
contradictory observations may be provided by a paradigm in
which acute geohelminth infections enhance allergic reactivity
and chronic infections suppress allergic inflammation (Fig. 1).
Acute or early helminth infections appear to enhance allergic
inflammation directed against both parasite and nonparasite anti-
gens (e.g. environmental allergens), while chronic infections
appear to suppress allergic inflammation. Suppression of atopy
and allergic disease among individuals with chronic or long-
standing geohelminth infestations may occur through several
mechanisms that include mast cell saturation by polyclonal IgE
and the enhanced production of anti-inflammatory cytokines (i.e.
IL-10 and TGF-b). The overall effect of geohelminth infections
on allergic inflammation is likely to vary between different
regions and even between different communities in the same 
area depending on the endemicity of infection with different 
geohelminth parasites and on the age (and history of infection)
of the study group selected. Clearly, the interaction between 
geohelminth infections and allergy is highly complex, and 
there remain a number of unanswered questions regarding 
the modulatory role of geohelminth infections against atopy/
allergic disease. Future studies could address the following 
questions: 

• What are the important mechanisms of geohelminth-mediated
immunomodulation of atopy/allergic disease in populations of
different endemicity for geohelminths?

• Are atopic individuals more resistant to geohelminth infections
or are geohelminth-infected individuals more protected against
atopy (i.e. reverse causality)?

• Can the suppression of atopy associated with chronic geo-
helminth infections be reversed by anthelmintic treatment and
can the reacquisition of infection after treatment have the
reverse effect?

• Has the prevalence of atopy/allergy increased in areas where
sustained anthelmintic control programmes are in place?

• What are the risk factors for allergy in geohelminth-endemic
populations and do these differ from nonendemic populations?
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